Category Archives: Uncategorized

Assessing the Effects of Storm Surge Barriers on the Hudson River Estuary

PI:  Philip Orton, Stevens Institute of Technology

Team member / Collaborative Lead:  Bennett Brooks, Consensus Building Institute

Team member / End-User:  Kristin Marcell, New York State DEC, Hudson River Estuary Program, and Cornell University Water Resources Institute

Team member / End-User:  Sarah Fernald, New York State DEC, NOAA Hudson River National Estuarine Research Reserve

Funding agency:  NOAA National Estuarine Research Reserve Science Collaborative

Project period – October 2018 through September 2019 (extension likely to late 2019)

Project Summary

Coastal cities around the country are exploring structural engineering options for defending against extreme storms and the resulting surges of ocean water that cause massive flooding. Storm surge barriers or tide gates can effectively protect harbors and minimize flooding, property damage, and loss of life during large storms. These barriers typically span the opening to a harbor or river mouth and include gates that are only closed when storm surges are expected. However, even when gates are open, the barriers may reduce water flow and tidal exchange, which in turn could affect water quality and ecological processes. A study of this topic is currently underway in the New York metropolitan area, an area with highly valuable and vulnerable coastal infrastructure. The U.S. Army Corps of Engineers, states of New York and New Jersey, and New York City are partnering under the Harbor and Tributaries Focus Area Feasibility Study (HATS) to evaluate surge barriers and other options to manage coastal storm risks.

figure

Scientists and engineers are increasingly recognizing the need for collaboration on research that more fully explores the advantages and disadvantages of large surge barriers. The National Estuarine Research Reserve Science Collaborative funded a “Catalyst” project for one year with the following goals: (1) to facilitate development of a collaborative research agenda that can help interested parties better understand potential barrier effects on nearby estuaries, and (2) to undertake targeted research in close collaboration and with information-sharing among scientists and key end-users such as the U.S. Army Corps of Engineers and its partners. The project team will conduct modeling and analyses of the physical influences of surge barriers and host a series of workshops to synthesize and share information.

Anticipated Benefits

  • Improved understanding of the benefits and impacts of storm surge barriers on the Hudson River and the surrounding estuarine system.
  • Enhanced engagement and collaboration among the research community to expand studies of storm surge barriers.
  • More scientific input to the Harbor and Tributaries Focus Area Feasibility Study, allowing the Army Corps and its partners to consider a range of costs and benefits of surge barriers.
  • Increased coordination and understanding between the scientific community and key end users in the New York metropolitan area, providing a foundation for future collaborative efforts.

Project Approach

The project approach is designed to foster close collaboration and information-sharing among scientists and key end users. An advisory committee is providing input to the project team to ensure that data analyses and workshop plans are responsive to the needs of end users, such as the Army Corps of Engineers and relevant city and state agency offices. The project team is organizing a series of three to four workshops that will focus on framing the group’s collective understanding of the benefits and impacts of barriers, highlighting areas for future research or discussion, and catalyzing new collaborative research efforts. In addition to key end users and project advisors, the team is inviting additional experts on estuaries and surge barriers to some of the workshops to help address the specific topics and areas of uncertainty identified in prior meetings. The project team is summarizing workshop presentations and discussions into targeted reports and creating a future scope of work that will outline key research needs and lessons learned from the project.

Concurrently, the team is conducting hydrodynamic modeling and scenario data analyses to better understand the physical and ecological effects of a surge barrier on the Hudson River estuary and provide the Army Corps with information to inform their study. The team has models of tides, wind waves, storm surge, and three-dimensional estuarine circulation, as well as a large database of historical simulations and hypothetical storm simulations and probabilities from a prior risk assessment study, which includes both coastal flooding and inland rain flooding along the Hudson. These modeling tools will be used to address specific questions of interest to end users, such as how different barriers would affect tidal range, salinity, stratification, wave impacts, or rain-driven flooding behind a closed barrier.

Targeted End Users and Anticipated Products

The project advisory committee and workshops are engaging a range of organizations that could use the results in different ways. Targeted end users include non-profit organizations and research institutes invested in this topic, as well as the federal, state, and city offices in New Jersey and New York that have authority to manage coastal storm risks. The project is generating the following products:

  • A series of workshops engaging a range of end users and relevant experts;
  • Workshop summaries synthesizing current science about barrier benefits and impacts and identifying key remaining research needs;
  • A technical report explaining the results of hydrodynamic modeling and scenario data analyses; and
  • A future scope of work laying out a three-year plan for conducting a comprehensive assessment of barrier benefits and impacts, as well as specific plans for funding next steps and filling research gaps.

 

Project Outputs

Project Scoping Session – held 3/25/2019

Leave a comment

Filed under Uncategorized

Consortium for Climate Risk in the Urban Northeast (CCRUN)

PIs:  Radley Horton, Franco Montalto, William Solecki; Co-PIs:  Philip Orton, Patrick Kinney, Richard Palmer, Yochanan Kushnir and Robert Chen

Funding agency:  National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) Regional Integrated Sciences and Assessments program (RISA)

Project period:  2015-2020 (Phase II)

Project website:  Consortium for Climate Risk in the Urban Northeast

Abstract

Urban populations and infrastructure have unique vulnerabilities to extreme climate events, and these vulnerabilities are projected to increase in the future. The major cities of the northeastern U.S. are at the vanguard of resilience efforts, in part with the aid of the Consortium for Climate Risk in the Urban Northeast (CCRUN). The primary goal of CCRUN Phase II is to improve these resilience efforts by scaling them to meet the scope of the adaptation challenge.

Toward this goal, CCRUN Phase II has built an interdisciplinary team composed of climate scientists, engineers, and social scientists working in tandem with sector experts in coasts, health, and water. We will address three questions that lie at the interface between science and decision-making: 1) Which climate and climate impact information products most influence decision-making and adaptation action? 2) Which adaptation strategies are most effective for different urban populations and in different urban contexts? 3) What are the region’s key conditions (e.g., institutional, regulatory, infrastructural, and/or socioeconomic) that serve as opportunities for or barriers to, ‘ramping up’ meaningful climate resilience practice? As we develop answers to these questions, CCRUN will continue to provide state-of-the art climate risk assessment information, co-generated with the region’s stakeholders.

By seeking answers to the above questions, and building upon efforts begun in CCRUN Phase I, the proposed work supports multiple NOAA CSI research objectives relevant to this Competition: 1) understanding decision contexts for using climate information (through responsiveness to stakeholder needs, with an emphasis on participatory processes and relationships); 2) developing actionable knowledge through interdisciplinary research (an outcome of the strong ties linking our sectors and cross-cutting themes); 3) maintaining diverse, flexible networks for sharing knowledge (e.g., through regional partnerships with the DOI NE Climate Science Center and NOAA NE Regional Climate Center); and 4) innovating services to enhance the use of science in decision-making (e.g., through new web tool and data sharing plans and platforms).

 

Coasts Sector:  Phase I accomplishments

The Phase I work of the Coasts Sector team for the “Consortium for Climate Risk in the Urban Northeast” project fit into three categories – (1) storm surge modeling and physics, (2) dynamic model-based flood risk assessment and mapping with climate change and sea level rise, and (3) quantitative analysis of coastal flood adaptations.  We studied these topics across the U.S. urban Northeast corridor, including Philadelphia, New York, Boston, and cities in between.  CCRUN is the project and base funding that has supports much of my position at Stevens, since I arrived in late 2010.  Therefore, the header’s TOPICS link summarizes the range of research which has been done so far and can be attributed at least in part to CCRUN.

Coasts Sector:  Phase II plans

In phase II of CCRUN, the coastal sector team will improve the resilience of cities along the Northeast urban corridor through three main thrusts – (1) improving the “forecasting the future” layer of resilience through ensemble forecasting and hazard assessment, (2) improving the metrics of resilience, and (3) better communicating the forecasts of hazards and the metrics of resilience.  All three are aimed at one focal point:  Informed, improved decision-making on coastal urban resilience.

Our primary scientific objectives are:

  • Define and quantify flood hazards more broadly, using parameters related to both economic and human health risk
  • Quantify flood resilience vis-à-vis this broader set of risks, using metrics that weigh both present-day and future hazards
  • Utilize hydrodynamic modeling to map how adaptations can modify future flooding, risks, and resilience for Boston, New York and Philadelphia
  • (leveraged) Quantify coastal storm risk from waves and inundation (NASA-Kushnir 2014-2016 funding)
  • (leveraged) Measure the impact of structural and nature-based coastal adaptations on flood risk and water quality (NOAA-COCA 2014-2015; NPS 2014-2016 funding)
  • (leveraged) Study and operationalize ensemble forecasting for regional-scale and street-scale flood forecasts (NRL 2014-2015; PANYNJ 2014-2018 funding)

Leave a comment

Filed under Uncategorized

Vulnerability to Extreme Winter Storms (StormEVAAC)

This project has a separate website: http://www.ldeo.columbia.edu/stormevaac

Leave a comment

Filed under Uncategorized