Assessing the Effects of Storm Surge Barriers on the Hudson River Estuary

PI:  Philip Orton, Stevens Institute of Technology

Team member / Collaborative Lead:  Bennett Brooks, Consensus Building Institute

Team member / End-User:  Kristin Marcell, New York State DEC, Hudson River Estuary Program, and Cornell University Water Resources Institute

Team member / End-User:  Sarah Fernald, New York State DEC, NOAA Hudson River National Estuarine Research Reserve

Funding:  NOAA National Estuarine Research Reserve Science Collaborative, with supplementary funds from the New York State Energy Research and Development Authority (NYSERDA)

Project periods – October 2018 through February 2020 (NOAA) and October 2019 through August 2020 (NYSERDA)

Note:  This project has ended, and final outputs and reports are listed at the bottom of this page.  

Project Summary

Coastal cities around the country are exploring structural engineering options for defending against extreme storms and the resulting surges of ocean water that cause massive flooding. Storm surge barriers or tide gates can effectively protect harbors and minimize flooding, property damage, and loss of life during large storms. These barriers typically span the opening to a harbor or river mouth and include gates that are only closed when storm surges are expected. However, even when gates are open, the barriers may reduce water flow and tidal exchange, which in turn could affect water quality and ecological processes. A study of this topic is currently underway in the New York metropolitan area, an area with highly valuable and vulnerable coastal infrastructure. The U.S. Army Corps of Engineers, states of New York and New Jersey, and New York City are partnering under the Harbor and Tributaries Focus Area Feasibility Study (HATS) to evaluate surge barriers and other options to manage coastal storm risks.


Scientists and engineers are increasingly recognizing the need for collaboration on research that more fully explores the advantages and disadvantages of large surge barriers. The National Estuarine Research Reserve Science Collaborative funded a “Catalyst” project for one year with the following goals: (1) to facilitate development of a collaborative research agenda that can help interested parties better understand potential barrier effects on nearby estuaries, and (2) to undertake targeted research in close collaboration and with information-sharing among scientists and key end-users such as the U.S. Army Corps of Engineers and its partners. The project team will conduct modeling and analyses of the physical influences of surge barriers and host a series of workshops to synthesize and share information.

Anticipated Benefits

  • Improved understanding of the benefits and impacts of storm surge barriers on the Hudson River and the surrounding estuarine system.
  • Enhanced engagement and collaboration among the research community to expand studies of storm surge barriers.
  • More scientific input to the Harbor and Tributaries Focus Area Feasibility Study, allowing the Army Corps and its partners to consider a range of costs and benefits of surge barriers.
  • Increased coordination and understanding between the scientific community and key end users in the New York metropolitan area, providing a foundation for future collaborative efforts.

Project Approach

The project approach is designed to foster close collaboration and information-sharing among scientists and key end users. An advisory committee is providing input to the project team to ensure that data analyses and workshop plans are responsive to the needs of end users, such as the Army Corps of Engineers and relevant city and state agency offices. The project team is organizing a series of three to four workshops that will focus on framing the group’s collective understanding of the benefits and impacts of barriers, highlighting areas for future research or discussion, and catalyzing new collaborative research efforts. In addition to key end users and project advisors, the team is inviting additional experts on estuaries and surge barriers to some of the workshops to help address the specific topics and areas of uncertainty identified in prior meetings. The project team is summarizing workshop presentations and discussions into targeted reports and creating a future scope of work that will outline key research needs and lessons learned from the project.

Concurrently, the team is conducting hydrodynamic modeling and scenario data analyses to better understand the physical and ecological effects of a surge barrier on the Hudson River estuary and provide the Army Corps with information to inform their study. The team has models of tides, wind waves, storm surge, and three-dimensional estuarine circulation, as well as a large database of historical simulations and hypothetical storm simulations and probabilities from a prior risk assessment study, which includes both coastal flooding and inland rain flooding along the Hudson. These modeling tools will be used to address specific questions of interest to end users, such as how different barriers would affect tidal range, salinity, stratification, wave impacts, or rain-driven flooding behind a closed barrier.

Targeted End Users 

The project advisory committee and workshops are engaging a range of organizations that could use the results in different ways. Targeted end users include non-profit organizations and research institutes invested in this topic, as well as the federal, state, and city offices in New Jersey and New York that have authority to manage coastal storm risks.


Project Outputs

Peer-Reviewed Publications

Paper #1 – Chen, Z., P. M. Orton, and T. Wahl (2020), Storm Surge Barrier Protection in an Era of Accelerating Sea Level Rise: Quantifying Closure Frequency, Duration and Trapped River Flooding, Journal of Marine Science and Engineering, 8(9), 725, doi:10.3390/jmse8090725.  open access

Paper #2 – Chen, Z., & Orton, P. M. (2023). Effects of Storm Surge Barrier Closures on Estuary Saltwater Intrusion and Stratification. Water Resources Research, e2022WR032317, doi: 10.1029/2022WR032317.  web | temporary free access 

Paper #3 – Orton, P. M., Ralston, D., van Prooijen, B., Secor, D., Ganju, N. K., Chen, Z., et al. (2023). Increased utilization of storm surge barriers: A research agenda on estuary effects. Earth’s Future. doi.10.1029/2022EF002991. open access

Media/Press Releases

What Venice can learn from Stevens Research

Project Scoping Session – held 3/25/2019

Workshop: Surge Barrier Environmental Effects and Empirical Experience – held 9/13/2019

Final Workshop – held 1/28/2020

Final Research Presentation – held 6/30/2020

A presentation was given by Philip Orton, with Co-author Ziyu Chen, titled “Assessing the Physical Effects of Storm Surge Barriers on the Harbor and Hudson River Estuary”. This research continues as Ziyu’s PhD dissertation, so feel free to check in with him on progress.

Final Project Reports

Project Datasets

Data and codes for Paper #1 – Python codes and datasets for barrier closure frequency-duration analysis, trapped river water levels, and trapped water extreme value analysis.

Data and codes for Paper #2 – (1) NYHOPS/sECOM landscape elevation data (DEM) for (a) control model (CSV) (b) Alt3A barriers model. (2) Other data useful for reproducing model simulations (e.g. river, tide boundary conditions).


Leave a comment

Filed under Uncategorized

Comments are closed.